Spatial and functional localisation of innovation development in Russian regions: analysis and forecast
Аннотация и ключевые слова
Аннотация (русский):
Purpose: To identify features of spatial and functional localization of innovation activity of Russian regions, it is necessary to forecast its dynamics, development, and justification of directions and tools of regional innovation policy in the medium term. Research methods: comparative analysis; structuring of the information dataset – virtual clustering method; correlation and regression analysis. Results: we have proposed five indicators characterizing spatial and functional localization of regional innovation development. On the base of them, we formed virtual clusters, including regions with similar values of the parameters under study. We identified the closest representative region to its center for each cluster. Also we used the example of the Yaroslavl Region (region-representative of cluster B) to identify trends by the studied indicators and draw conclusions about the region’s forecasting and development prospects in terms of the basic parameters of innovative development.

Ключевые слова:
cluster analysis, k-means method, virtual clusters, Russian regions, innovation development, representative regions, trends.
Список литературы

1. BIOTECH 2030. (2016). Strategy for Scientific and Technological Development of the Russian Federation until 2035. Materials for the Ministry of Education and Science of the Russian Federation. 16 May 2016. Retrieved from http://biotech2030.ru/wp-content/uploads/2016/06/prezentatsiya-proekta-SNTR-12.05.2016. pdf (accessed 10.01.2023) (in Russian).

2. Institute of Statistical Research and Knowledge Economics, National Research University Higher School of Economics. (2012). Rating of innovative development of the Russian regions. Retrieved from https:// www.hse.ru/primarydata/rir (accessed 10.01.2023) (in Russian).

3. Agency for Strategic Initiatives. (2012). National Rating of the Investment Climate in the Russian Federation members. Retrieved from https://asi.ru/government_officials/rating/ (accessed 10.01.2023) (in Russian).

4. Association of Innovative Regions of Russia, Ministry of Economic Development of the Russian Federation. (2012). Rating of Innovative Regions of Russia. Retrieved from http://i-regions.org/reiting/rejting-innovatsionnogo-razvitiya (accessed 10.01.2023) (in Russian).

5. Mityakov, S. N., Mityakov, E. S., Lapaev, D. N., & Yakovleva, G. N. (2021). Tools for assessing the innovation activity of the regions: multicriteria analysis by the Pareto method. Innovacii, (2), 77-82. DOI:https://doi.org/10.26310/2071-3010.2021.268.2.011 (in Russian).

6. Emelyanova, E. V., & Kharchikova, N. V. (2019). Innovative Potential of the Regions of the Central Federal District: Assessment of the Main Trends and Development Prospects. Ekonomika promyshlennosti, 12(4), 443-454. DOI:https://doi.org/10.17073/2072-1633-2019-4-443-454 (in Russian).

7. Polina, E. A., & Solovieva, I. A. (2020). Tools for complex analysis of the region’s innovation development. Vestnik Yuzhno-ural’skogo gosudarstvennogo universiteta. Seriya: Ekonomika i menedzhment, 14(2), 37-45. DOI:https://doi.org/10.14529/em200204 (in Russian).

8. Treshchevsky, Y. I., & Litovkin, M. V. (2017). Innovative activity in regions of Russia with various types of economic behavior. Russian Journal of Agricultural and Socio-Economic Sciences, 4(64), 4-11. DOI:https://doi.org/10.18551/rjoas.2017-04.01 (in Russian).

9. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.

10. Oldenderfer, M. S., & Blashfield, R. K. (1989). Cluster analysis. In I.S. Enyukov (Ed.). Factor, discriminant and cluster analysis. (pp. 139-210). Moscow: Finansy i statistika (in Russian).

11. Mandel, I. D. (1988). Cluster analysis. Moscow: Finansy i statistika (in Russian).

12. Gordeev, V. A., & Markin, M. I. (2022). Competitiveness of Russian regions in the context of digital inequality. Journal of regional and international competitiveness, 3(4), 65-73. Retrieved from https://doi. org/10.52957/27821927_2022_4_65

13. Nikitina, L. M., & Kurkin, V. A. (2020). Application of Cluster Analysis to Assess the Development of Russia’s Regions’ Digital Economy. Region: sistemy, ekonomika, upravlenie, (3), 28-38. DOI:https://doi.org/10.22394/19974469-2020-50-3-28-38 (in Russian).

14. Piskun, E. I., & Khokhlov, V. V. (2019). Economic Development of the Russian Federation Regions: Factor-Cluster Analysis. Ekonomika regiona, 15(2), 363-376. DOI:https://doi.org/10.17059/2019-2-5 (in Russian).

15. Gulyaeva, T. I., & Takmakova, E. V. (2021). Estimation of Living Standards in Russian Regions Based on the Application of Cluster Analysis. Economicheskiy Analysis: Theoriya i praktika, 20(5), 810-828. DOI:https://doi.org/10.24891/ea.20.5.810 (in Russian).

16. Abysheva, I. G., Akmarov, P. B., Tretiakova, E. S., & Knyazeva, O. P. (2021). Cluster analysis of investment impact on regional development. Upravlencheskiy uchet, (7-1), 6-15 (in Russian).

17. Treshchevsky, Y. I., Kosobutskaya, A. Yu., & Garin, L. K. (2021). Economic-statistical analysis of localization of ecological-economic activity of Russian regions. Socialno-politicheskie issledovaniya, (2), 87-99. DOI:https://doi.org/10.20323/2658-428X-2021-2-11-87-99 (in Russian).

18. Kosobutskaya, A. Yu., Gladkih, M. O., Tsebekova, E. P., & Opoikova, E. A. (2021). Analysis of Foreign Economic Activity of Russian Regions Based on the Application of Virtual Clustering Method. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Ekonomika i upravlenie, (2), 49-59. DOI: 10.17308/ econ.2021.2/3459 (in Russian).

19. Kosobutskaya, A. Yu., Kanapukhin, P. A., & Bakhtin, M. N. (2020). Regional road infrastructure: spatial and functional differentiation and strategic positioning. Ekonomika i upravlenie: teoriya i praktika, 6(3), 26-35. (in Russian).

20. Endovitsky, D. A., Treshchevsky, Y. I., & Rudnev, E. A. (2019). Statistical Analysis of Spatial and Functional Localization of Educational Subsystems in Russian Regions. Vishee obrazovaniye v Rossii, 28(3), 75-84. DOI:https://doi.org/10.31992/0869-3617-2019-28-3-75-84 (in Russian).

21. Valinurova, L. S., & Tlyavlin, T. R. (2022). Cluster Analysis of Innovation Activity of Regions of the Russian Federation. Economika stroitelstva, (6), 55-61 (in Russian).

22. Abashkin, V. L., Abdrakhmanova, G. I., Bredikhin, S. V. et al. (2021). Rating of innovation development of the Russian Federation subjects. Iss. 7. Moscow: National Research University Higher School of Economics (in Russian).

23. Federal State Statistics Service. (2014–2021). Science, innovation, technology. Retrieved from https:// rosstat.gov.ru/statistics/science (accessed 10.01.2023) (in Russian).

24. Federal State Statistics Service. (2010–2021). Science, innovation, technology. Retrieved from https:// rosstat.gov.ru/statistics/science (accessed 10.01.2023) (in Russian).


Войти или Создать
* Забыли пароль?